R语言做生态位分化分析(3)一个真实的小例子

数据可视化 数据可视化 840 人阅读 | 0 人回复 | 2024-06-12

数据和代码来源于论文

Using genomics, morphometrics, and environmental niche modeling to test the validity of a narrow-range endemic snail, Patera nantahala (Gastropoda, Polygyridae)

https://github.com/NathanWhelan/Patera/blob/main/niche-modeling_Patera_FINAL.R

https://figshare.com/articles/dataset/Using_genomics_morphometrics_and_environmental_niche_modeling_to_test_the_validity_of_a_narrow-range_endemic_snail_Patera_nantahala_GastropodaPolygyridae/19638642

如果要做这个分析的话需要准备的数据是

  • 两个不同物种的经纬度数据
  • 环境数据(这个环境数据可以利用geodata::worldclim_global下载)

经纬度数据的格式 image.png

代码

library(tidyverse)
library(ENMTools)

sp1 <- enmtools.species(species.name = "sp1", 
                        presence.points = read.csv("2024.data/20240612/clarki.csv"))
sp2 <- enmtools.species(species.name = "sp2", 
                        presence.points = read.csv("2024.data/20240612/nantahala.csv"))

tif.path<-paste0("2024.data/20240612/climate/wc2.1_5m/wc2.1_5m_bio_",1:19,".tif")
tif.path
wclim<-terra::rast(tif.path)
## 环境数据是全球范围的数据,
## 裁剪成一定范围,根据物种的分布来裁剪
wclim.crop <- crop(wclim, extent(-85, -80, 34, 37))

reps <- 10
## 重复次数设置100以上,这里只是为了练习
back <- 10000
idtest_glm <- identity.test(
  sp1,
  sp2,
  wclim.crop,
  type = 'glm',
  f = NULL,
  nreps = reps,
  nback = back,
  low.memory = FALSE,
  bg.source="env",
  rep.dir = "bioclimate_glm",
  verbose = FALSE,
  clamp = TRUE,
)
idtest_glm

idtest_glm$p.values
idtest_glm$description
idtest_glm$d.plot
idtest_glm$i.plot

关于结果的描述应该按照这个论文来写就行

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290044

image.png

所有的测试代码

library(tidyverse)
library(ENMTools)

# wclim<-geodata::worldclim_global(var="bio", res=5, 
#                                  path = "2024.data/20240612/")

tif.path<-paste0("2024.data/20240612/climate/wc2.1_5m/wc2.1_5m_bio_",1:19,".tif")
tif.path
wclim<-terra::rast(tif.path)


plot(wclim[[1]])

wclim.crop <- crop(wclim, extent(-85, -80, 34, 37))
plot(wclim.crop[[1]])

x<-read_csv("2024.data/20240612/clarki-nantahala_1KM-thinned_rarefied_points.csv",
            col_names = FALSE)
x
colnames(x)[1:3]<-c("species","Longitude","Latitude")

x %>% pull(Longitude) %>% range()
x %>% pull(Latitude) %>% range()

world.dat<-map_data("world")

ggplot() +
  geom_polygon(data=world.dat,aes(x=long,y=lat,group=group),
               fill="#dedede")+
  geom_point(data = x,aes(x=Longitude,y=Latitude))


x %>% 
  pull(species) %>% 
  table()

x %>% 
  filter(species=="clarki") %>% 
  write_csv("2024.data/20240612/clarki.csv")
x %>% 
  filter(species=="nantahala") %>% 
  write_csv("2024.data/20240612/nantahala.csv")

sp1 <- enmtools.species(species.name = "sp1", 
                        presence.points = read.csv("2024.data/20240612/clarki.csv"))
sp2 <- enmtools.species(species.name = "sp2", 
                        presence.points = read.csv("2024.data/20240612/nantahala.csv"))

tif.path<-paste0("2024.data/20240612/climate/wc2.1_5m/wc2.1_5m_bio_",1:19,".tif")
tif.path
wclim<-terra::rast(tif.path)

wclim.crop <- crop(wclim, extent(-85, -80, 34, 37))

reps <- 10
back <- 10000
idtest_glm <- identity.test(
  sp1,
  sp2,
  wclim.crop,
  type = 'glm',
  f = NULL,
  nreps = reps,
  nback = back,
  low.memory = FALSE,
  bg.source="env",
  rep.dir = "bioclimate_glm",
  verbose = FALSE,
  clamp = TRUE,
)
idtest_glm$p.values
idtest_glm$description
idtest_glm$d.plot
idtest_glm$i.plot
idtest_glm

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

微信扫一扫分享文章

+10
无需登陆也可“点赞”支持作者
分享到:
评论

使用道具 举报

热门推荐