ChIP-seq 分析:文库的复杂性和丰富性(7)

表观组 表观组 225 人阅读 | 0 人回复 | 2024-07-08

1. 文库复杂性

ChIPseq 中的一个潜在噪声源是 ChIPseq 库在 PCR 步骤中的过度放大。这可能会导致大量重复读取,从而混淆峰值调用。

complexity

2. 重复

我们应该比较样本之间的重复率,以确定任何经历过度放大的样本,从而确定复杂性较低的可能性。

flattagcounts() 函数报告可以报告重复的数量和总映射读取,因此我们可以从那里计算我们的重复率。

myFlags <- flagtagcounts(myQC)
myFlags["DuplicateByChIPQC", ]/myFlags["Mapped", ]

myFlags

3. 跨基因 reads 富集

我们还可以使用 ChIPQC 使用 plotRegi() 函数来查看我们在基因特征上的 reads 分布。

在这里,与输入样本相比,我们预计 ChIPseq 信号在 5'UTR 和启动子中更强。

p <- plotRegi(myQC)

p

微信扫一扫分享文章

+10
无需登陆也可“点赞”支持作者
分享到:
评论

使用道具 举报

2548 积分
226 主题
+ 关注
热门推荐