R语言绘图 | 最全的云雨图绘制教程

R语言 R语言 333 人阅读 | 0 人回复 | 2024-08-19

原文链接:R语言绘图 | 最全的云雨图绘制教程

一边学习,一边总结,一边分享!

关于《R语言绘图专栏》

关于**《R语言绘图专栏》,此专栏基于**<span class="ne-text">R语言</span>绘制图形。每个图形我们会提供对应的 <span class="ne-text">R代码</span><span class="ne-text">数据</span><span class="ne-text">文本</span>文档。此系列将会是一个长期更新的系列。

注意:若是你加入我们社群,则直接在社群中获得。

本期教程

2023年教程总汇

https://mp.weixin.qq.com/s/wCTswNP8iHMNvu5GQauHdg

Code

  1. 加载所需R包
library(ggrain)
library(ggplot2)
  1. 加载数据
iris

  1. 绘制基础云雨图
ggplot(iris, aes(x = Species, y = Sepal.Length, fill =  Species)) +
  geom_rain(rain.side = 'l')

ggplot(iris, aes(x = 1, y = Sepal.Length, fill = Species)) +
  geom_rain(alpha = .5)

给散点添加颜色

ggplot(iris, aes(1, Sepal.Width, fill = Species, color = Species)) +
  geom_rain(alpha = .6,
            boxplot.args = list(color = "black", outlier.shape = NA)) +
  theme_classic() +
  scale_fill_brewer(palette = 'Dark2') +
  scale_color_brewer(palette = 'Dark2')

将图形进行翻转,使用 <span class="ne-text">coord_flip()</span>

ggplot(iris, aes(Species, Sepal.Width, fill = Species)) +
  geom_rain(alpha = .5) +
  theme_classic() +
  scale_fill_brewer(palette = 'Dark2') +
  guides(fill = 'none', color = 'none') +
  coord_flip()

  1. 两两进行配对,使用线条连线 数据整理
set.seed(42) # the magic number

iris_subset <- iris[iris$Species %in% c('versicolor', 'virginica'),]

iris.long <- cbind(rbind(iris_subset, iris_subset, iris_subset), 
                   data.frame(time = c(rep("t1", dim(iris_subset)[1]), rep("t2", dim(iris_subset)[1]), rep("t3", dim(iris_subset)[1])),
                              id = c(rep(1:dim(iris_subset)[1]), rep(1:dim(iris_subset)[1]), rep(1:dim(iris_subset)[1]))))

# adding .5 and some noise to the versicolor species in t2
iris.long$Sepal.Width[iris.long$Species == 'versicolor' & iris.long$time == "t2"] <- iris.long$Sepal.Width[iris.long$Species == 'versicolor' & iris.long$time == "t2"] + .5 + rnorm(length(iris.long$Sepal.Width[iris.long$Species == 'versicolor' & iris.long$time == "t2"]), sd = .2)
# adding .8 and some noise to the versicolor species in t3
iris.long$Sepal.Width[iris.long$Species == 'versicolor' & iris.long$time == "t3"] <- iris.long$Sepal.Width[iris.long$Species == 'versicolor' & iris.long$time == "t3"] + .8 + rnorm(length(iris.long$Sepal.Width[iris.long$Species == 'versicolor' & iris.long$time == "t3"]), sd = .2)

# now we subtract -.2 and some noise to the virginica species
iris.long$Sepal.Width[iris.long$Species == 'virginica' & iris.long$time == "t2"] <- iris.long$Sepal.Width[iris.long$Species == 'virginica' & iris.long$time == "t2"] - .2 + rnorm(length(iris.long$Sepal.Width[iris.long$Species == 'virginica' & iris.long$time == "t2"]), sd = .2)

# now we subtract -.4 and some noise to the virginica species
iris.long$Sepal.Width[iris.long$Species == 'virginica' & iris.long$time == "t3"] <- iris.long$Sepal.Width[iris.long$Species == 'virginica' & iris.long$time == "t3"] - .4 + rnorm(length(iris.long$Sepal.Width[iris.long$Species == 'virginica' & iris.long$time == "t3"]), sd = .2)

iris.long$Sepal.Width <- round(iris.long$Sepal.Width, 1) # rounding Sepal.Width so t2 data is on the same resolution
iris.long$time <- factor(iris.long$time, levels = c('t1', 't2', 't3'))
iris.long[iris.long$time %in% c('t1', 't2'),]

ggplot(iris.long[iris.long$time %in% c('t1', 't2'),], aes(time, Sepal.Width, fill = Species)) +
  geom_rain(alpha = .5) +
  theme_classic() +
  scale_fill_manual(values=c("dodgerblue", "darkorange")) +
  guides(fill = 'none', color = 'none')

原文链接:R语言绘图 | 最全的云雨图绘制教程


往期部分文章

1. 最全WGCNA教程(替换数据即可出全部结果与图形)


2. 精美图形绘制教程

3. 转录组分析教程

4. 转录组下游分析

小杜的生信筆記 ,主要发表或收录生物信息学教程,以及基于R分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

微信扫一扫分享文章

+10
无需登陆也可“点赞”支持作者
分享到:
评论

使用道具 举报

热门推荐